Симулятор Data Science == |

> Получите опыт, решая кейсы бизнеса из разных индустрий
> Создайте пет-проект для портфолио
> Продолжайте развиваться в области машинного обучения, анализа данных и AI

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.

Симулятор Data Science

— это образовательная подписка по анализу данных, машинному обучению и AI

80+ реальных задач бизнеса
Три уровня сложности
Можно начать с самого простого и постепенно повышать сложность по мере развития навыков
Retail, E-commerce, FinTech, FoodTech, EdTech, Реклама и другие
Разные индустрии
Python, SQL, A/B-тесты, Метрики, LLM, Рекомендательные системы, прогнозирование, деплой и многое другое
Тематические подборки
Уникальные пет-проекты для портфолио
Разрабатываются в команде под руководством экспертов индустрии
ClickHouse, FastAPI, MLFlow, DVC, Spark и еще 10+ инструментов
Большой выбор инструментов
Комьюнити из 500+ человек
Чат с авторами и другими студентами с доступом навсегда
Симулятор — не просто тренажер, а живой продукт
Ежемесячные обновления в задачах и пет-проектах с учетом запросов студентов

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.

точка а - До работы с Симулятором
точка В - После работы с Симулятором
Нет опыта работы
Симулятор Data Science поможет получить реальный опыт, чтобы выделиться на собеседовании.
Получаю первый оффер
Симулятор Data Science поможет набраться нужного опыта и изучить решения Senior-специалистов.
Не понимаю, куда расти дальше
Берусь за новые амбициозные проекты

точка а - До работы с Симулятором
точка В - После работы с Симулятором

Нет опыта работы
Симулятор Data Science поможет получить реальный опыт, чтобы выделиться на собеседовании.
Получаю первый оффер
Симулятор Data Science поможет набраться нужного опыта и изучить решения Senior-специалистов.
Не понимаю, куда расти дальше
Берусь за новые амбициозные проекты

Кому подойдет Симулятор Data Science >>

Хотите научиться применять AI в работе и выделяться на рынке труда

Интересующимся AI

Работаете ML-инженером и хотите набраться опыта для решения более интересных задач

ML-инженерам

Работаете аналитиком и хотите развиваться в сфере аналитики или ML

Аналитикам

Освоили базу по аналитике или ML и хотите получить работу

Начинающим карьеру

что нужно для начала //

Понимаете, как работать с циклами, списками и классами на базовом уровне
Знаете, как делать fit-predict
Представляете, что такое математическое ожидание
Умеете делать простые селекты и джойны
PYTHON
SQL
СТАТИСТИКА
ML
Для трека по машинному обучению

Не уверены, что вам подходит симулятор?

Оставьте заявку на консультацию — мы расскажем подробнее и поможем подобрать программу под ваши цели и уровень

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.

истории наших студентов >>

«У меня были базовые знания в области анализа данных, но хотелось больше практики и отработки теории на реальных задачах»
«На текущей работе столкнулся с новой для себя задачей по машинному обучению — справиться с ней помогли кейсы из Симулятора Data Science»
«Задачи на работе уже не вызывали того энтузиазма, что раньше, начал замечать, что стагнирую в развитии»
«У меня не было опыта работы в IT, хотя за плечами было множество пройденных курсов»

после симулятора data science

> Использую линтеры, документирую весь код в едином стиле, аннотирую типы, тестирую код через Pytest

до симулятора

> Хаотично пишу код на Python, редко пишу документацию, тестирую код в голове и через print
> Владею SQL на базовом уровне, боюсь вложенных запросов
> Не знаю, что такое t-test и p-value
> В ML знаю только fit-predict
> Спокойно пишу большие SQL-запросы с CTE, JOIN и оконными функциями
> Понимаю статистические критерии и знаю, как связать их с моделями машинного обучения
> Умею проводить A/B-тесты
> Могу реализовать кастомные метрики и алгоритмы, построить эмбеддинги
> Могу деплоить модели и сервисы
> Получил хорошие стартовые знания по Docker, FastApi, DVC, PySpark, MLflow
«У меня были базовые знания в области анализа данных, но хотелось больше практики и отработки теории на реальных задачах»
«На текущей работе столкнулся с новой для себя задачей по машинному обучению — справиться с ней помогли кейсы из Симулятора Data Science»
«Задачи на работе уже не вызывали того энтузиазма, что раньше, начал замечать, что стагнирую в развитии»
«У меня не было опыта работы в IT, хотя за плечами было множество пройденных курсов»

до симулятора

> 2 года проходил стажировку и полгода работал ML-инженером
> Знал базу классического ML, работал с CV
> Не знал, как решить рабочую задачу, связанную с рекомендательными системами

после симулятора data science

> Разобрался в основах рекомендательных систем, в частности метриках, запустил на работе персональные рекомендации и рекомендации сопутствующих товаров
> Научился строить эмбеддинги, которые используются для рекомендаций и прогнозирования спроса
> Улучшил навыки использования сложных SQL-запросов
> Устроился на работу в Ozon
«У меня были базовые знания в области анализа данных, но хотелось больше практики и отработки теории на реальных задачах»
«На текущей работе столкнулся с новой для себя задачей по машинному обучению — справиться с ней помогли кейсы из Симулятора Data Science»
«Задачи на работе уже не вызывали того энтузиазма, что раньше, начал замечать, что стагнирую в развитии»
«У меня не было опыта работы в IT, хотя за плечами было множество пройденных курсов»

до симулятора

> 1,5 года работал на позиции Middle ML Engineer в аутсорс-компании
> Устал от однообразных задач на работе и хотел сменить работу

после симулятора data science

> Расширил кругозор в ML-задачах
> Нашел новую работу благодаря сообществу, спустя время сам собеседовал студентов симулятора
«У меня были базовые знания в области анализа данных, но хотелось больше практики и отработки теории на реальных задачах»
«На текущей работе столкнулся с новой для себя задачей по машинному обучению — справиться с ней помогли кейсы из Симулятора Data Science»
«Задачи на работе уже не вызывали того энтузиазма, что раньше, начал замечать, что стагнирую в развитии»
«У меня не было опыта работы в IT, хотя за плечами было множество пройденных курсов»

до симулятора

> Не имел опыта работы в IT
> Прошел курсы по ML

после симулятора data science

> Погрузился в работу ML-инженера
> Понял, как и зачем применять конкретные технологии на практике
> Хотел закрепить знания на практике и поработать с задачами, приближенными к реальным, чтобы найти работу
> Обрел уверенность в своих силах и прошел собеседование

после симулятора data science

> Использую линтеры, документирую весь код в едином стиле, аннотирую типы, тестирую код через Pytest

до симулятора

> Спокойно пишу большие SQL-запросы с CTE, JOIN и оконными функциями
> Хаотично пишу код на Python, редко пишу документацию, тестирую код в голове и через print
> Владею SQL на базовом уровне, боюсь вложенных запросов
> Не знаю, что такое t-test и p-value
> Понимаю статистические критерии и знаю, как связать их с моделями машинного обучения
> В ML знаю только fit-predict
«У меня были базовые знания в области анализа данных, но хотелось больше практики и отработки теории на реальных задачах»
> Умею проводить A/B-тесты
> Могу реализовать кастомные метрики и алгоритмы, построить эмбеддинги
> Могу деплоить модели и сервисы
> Получил хорошие стартовые знания по Docker, FastApi, DVC, PySpark, MLflow
Никита
Илья
Ильдар
Даниил

после симулятора data science

> Разобрался в основах рекомендательных систем, в частности метриках, запустил на работе персональные рекомендации и рекомендации сопутствующих товаров

до симулятора

> Научился строить эмбеддинги, которые используются для рекомендаций и прогнозирования спроса
> 2 года проходил стажировку и полгода работал ML-инженером
> Знал базу классического ML, работал с CV
> Не знал, как решить рабочую задачу, связанную с рекомендательными системами
> Улучшил навыки использования сложных SQL-запросов
«На текущей работе столкнулся с новой для себя задачей по машинному обучению — справиться с ней помогли кейсы из Симулятора Data Science»
> Устроился на работу в Ozon
Никита
Илья
Ильдар
Даниил

после симулятора data science

> Расширил кругозор в ML-задачах

до симулятора

> Нашел новую работу благодаря сообществу, спустя время сам собеседовал студентов симулятора
> 1,5 года работал на позиции Middle ML Engineer в аутсорс-компании
> Устал от однообразных задач на работе и хотел сменить работу
«Задачи на работе уже не вызывали того энтузиазма, что раньше, начал замечать, что стагнирую в развитии»
Никита
Илья
Ильдар
Даниил

после симулятора data science

> Погрузился в работу ML-инженера

до симулятора

> Понял, как и зачем применять конкретные технологии на практике
> Не имел опыта работы в IT
> Прошел курсы по ML
> Хотел закрепить знания на практике и поработать с задачами, приближенными к реальным, чтобы найти работу
> Обрел уверенность в своих силах и прошел собеседование
«У меня не было опыта работы в IT, хотя за плечами было множество пройденных курсов»
Никита
Илья
Ильдар
Даниил

примеры задач на курсе //

BOOSTING UNCERTAINTY

Уровень: Hard
Мы прогнозируем объемы продаж маркетплейса для миллионов товаров с помощью градиентного бустинга. Стейкхолдеры хотят узнать, насколько мы уверены в предсказаниях модели. Ваша задача — оценить надежность ее предсказаний для данных в будущем.
Tree-Based Models / SQL / Time-Series
NLP / Transformers / OpenAI
Цель — научиться генерировать краткое содержание любого ролика на YouTube. Вы освоите API OpenAI и преобразуете наш LLM-сервис в веб-приложение с помощью Streamlit.
Уровень: Medium

VIDEO SUMMARY

Разработчики AI-продукта несколько недель назад запустили свое приложение. Удержание пользователей — ключевой фактор для определения того, удовлетворяет ли продукт потребности аудитории. Но как понять, будет ли сервис давать ценность спустя неделю, месяц, полгода? В этой задаче вы узнаете эффективный способ.
SQL / Metrics
Уровень: Medium

RETENTION RATE

BOOSTING UNCERTAINTY

Уровень: Hard
Мы прогнозируем объемы продаж маркетплейса для миллионов товаров с помощью градиентного бустинга. Стейкхолдеры хотят узнать, насколько мы уверены в предсказаниях модели. Ваша задача — оценить надежность ее предсказаний для данных в будущем.
Tree-Based Models / SQL / Time-Series
NLP / Transformers / OpenAI
Цель — научиться генерировать краткое содержание любого ролика на YouTube. Вы освоите API OpenAI и преобразуете наш LLM-сервис в веб-приложение с помощью Streamlit.
Уровень: Medium

VIDEO SUMMARY

Разработчики AI-продукта несколько недель назад запустили свое приложение. Удержание пользователей — ключевой фактор для определения того, удовлетворяет ли продукт потребности аудитории. Но как понять, будет ли сервис давать ценность спустя неделю, месяц, полгода? В этой задаче вы узнаете эффективный способ.
SQL / Metrics
Уровень: Medium