Курс Hard Аналитика данных для повышения квалификации

Hard Аналитика данных

Повысьте грейд за 6 месяцев
СТАРТ ПОТОКА
СКОРО ПОЯВИТСЯ
Старт потока продвинутого курса Hard Аналитика данных
уровень сложности
JUNIOR+ / middle
ФОРМАТ ОБУЧЕНИЯ
видеолекции и задания
Кому подойдет курс Hard Аналитика
Поэтапная оплата курса Hard Аналитика
курс от экспертов индустрии
Кому подойдет курс Hard Аналитика
Курс

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.

кому подойдет курс //

На курсе «Hard Аналитика данных» вы освоите навыки, необходимые аналитику уровня middle, а после курса сможете претендовать на повышение грейда как внутри компании, так и при поиске работы.

Аналитик данных уровня junior

Аналитик данных уровня middle

Продуктовый аналитик

BI-аналитик

Курс для BI-аналитика
Курс для продуктового аналитика
Курс для аналитика данных уровня Middle
Курс для аналитика данных уровня Junior

Кто такой middle аналитик данных >>

При составлении программы мы опирались на опыт практиков индустрии и нанимающих лидов, а также проанализировали карты компетенций крупных российских tech-компаний.
Для middle аналитиков важны не только hard, но и soft skills — именно поэтому в обучении мы уделяем особое внимание общению с заказчиками и объясняем, как преодолеть сложности кросс-командной коммуникации.
Специалист растет, когда успешно справляется с новыми для себя задачами или решает проблемы шире своей зоны ответственности. Это возможно только тогда, когда багаж знаний включает не только основы работы с данными, но и темы из смежных областей, — поэтому в программе курса вы найдете 4 модуля из разных сфер Data Science.
мы сделали 2 важных вывода:
1
2
Middle-аналитик данных

почему курс актуален //

Программа курса «Hard Аналитика данных» поможет в решении проблем, с которыми нередко сталкиваются аналитики крупных компаний — даже если вы лично пока с ними еще не сталкивались.
Аналитикам часто приходится создавать дашборды. Но если они формируются без понимания задач бизнеса, то только отнимают время у команды.
Создание ненужных отчетностей
Чтобы успешно работать в связке с узкими специалистами, нужно разбираться в области. Еще лучше — уметь самостоятельно писать пайплайны обработки данных, если у компании нет команды DWH.
Неэффективная коммуникация с командой DWH
В процессе обучения вы разберетесь в типах хранилищ данных и способах взаимодействия с ними, а также освоите Spark, S3, Clickhouse как самые популярные и оптимальные инструменты обработки больших данных.
Стандартные A/B-тесты работают не всегда, а ошибка в расчетах может обернуться большими расходами. Аналитик данных уровня middle должен знать, как выйти за пределы применения стандартных тестов и ответить на сложные вопросы заказчика.
Задачи, которые нельзя решить стандартными методами
На курсе вы узнаете, как выстроить культуру экспериментов в компании, изучите продвинутые методы экспериментов и узнаете что делать в случаях, если провести стандартный A/B-тест невозможно.
Аналитики данных регулярно взаимодействуют с командой инженеров машинного обучения, поэтому полезно знать основы и уметь решать базовые задачи самостоятельно. Еще лучше, если аналитик умеет сам строить модели — это дает преимущество на рынке труда.
Незнание методов машинного обучения
В процессе обучения вы разберетесь, как создавать и обучать модели, а затем оценивать и интерпретировать результаты для бизнеса.
На курсе вы освоите продуктовый подход, узнаете, какие существуют альтернативы дашбордам, и научитесь выбирать оптимальный вариант отчетности для решения поставленной задачи. Ваши дашборды будут отражать максимум информации и четко отвечать на запросы бизнеса.
Аналитикам часто приходится создавать дашборды. Но если они формируются без понимания задач бизнеса, то только отнимают время у команды.
  1. Создание ненужных отчетностей
Чтобы успешно работать в связке с узкими специалистами, нужно разбираться в области. Еще лучше — уметь самостоятельно писать пайплайны обработки данных, если у компании нет команды DWH.
2. Неэффективная коммуникация с командой DWH
В процессе обучения вы разберетесь в типах хранилищ данных и способах взаимодействия с ними, а также освоите Spark, S3, Clickhouse как самые популярные и оптимальные инструменты обработки больших данных.
Стандартные A/B-тесты работают не всегда, а ошибка в расчетах может обернуться большими расходами. Аналитик данных уровня middle должен знать, как выйти за пределы применения стандартных тестов и ответить на сложные вопросы заказчика.
3. задачи, которые нельзя решить стандартными методами
На курсе вы узнаете, как выстроить культуру экспериментов в компании, изучите продвинутые методы экспериментов и узнаете что делать в случаях, если провести стандартный A/B-тест невозможно.
Аналитики данных регулярно взаимодействуют с командой инженеров машинного обучения, поэтому полезно знать основы и уметь решать базовые задачи самостоятельно. Еще лучше, если аналитик умеет сам строить модели — это дает преимущество на рынке труда.
4. Незнание методов машинного обучения
В процессе обучения вы разберетесь, как создавать и обучать модели, а затем оценивать и интерпретировать результаты для бизнеса.
На курсе вы освоите продуктовый подход, узнаете, какие существуют альтернативы дашбордам, и научитесь выбирать оптимальный вариант отчетности для решения поставленной задачи. Ваши дашборды будут отражать максимум информации и четко отвечать на запросы бизнеса.

что нужно для начала /?/

Знаете базовый синтаксис, умеете работать с библиотеками на уровне экспорта/импорта данных, владеете навыком построения базовых визуализаций
Владеете навыком проверки гипотез, знакомы со статистическими критериями и p-value
Уже работали с Tableau, Power BI, Superset или похожими инструментами
Умеете писать запросы с JOIN, where, group by и агрегационными функциями
PYTHON
SQL
Дашборды и визуализация данных
Статистика и теория вероятностей
Консультация по курсу Hard Аналитика данных для повышения квалификации
Оставьте заявку, мы свяжется с вами и поможем подобрать курс, который будет полностью соответствовать вашему уровню и целям.

НЕ УВЕРЕНЫ, ЧТО КУРС ВАМ ПОДХОДИТ?

программа курса >>

Продуктовый подход к созданию отчетности

преподаватель:
Роман Бунин
Продолжительность:
3 недели
Практические задания:
После каждого блока

Работа с командой DWH и обработка больших данных

преподаватели:
Евгений Ермаков, Александр Волынский
Продолжительность:
5 недель
финальный проект:
по модулю

Продвинутые эксперименты

преподаватель:
Дмитрий Казаков
Продолжительность:
10 недель
финальный проект:
по модулю

Машинное обучение для решения задач аналитики

преподаватель:
Никита Табакаев
Продолжительность:
5 недель

авторы курса //

Head of Data Science Raiffeisen CIB, хедлайнер курса
  • руководит data-трансформацией в Райффайзен CIB
  • хедлайнер курсов StartML, Hard аналитика и Deep Learning Engineer
  • специализируется на машинном обучении и продвинутой аналитике данных
  • студент аспирантской школы по экономике НИУ ВШЭ
Нерсес Багиян
Head of Data Science Raiffeisen CIB, хедлайнер курса
Нерсес Багиян - Преподаватель курса Hard-аналитики данных
Chief Analytics Officer in Kolesa Group
  • Отвечает за развитие команд продуктовой аналитики, экспериментов, DWH, UX-research и Data Science.
  • Работает над построением data-driven, experiment-driven культуры и discovery процессов в продуктовой аналитике.
  • Работал в команде построения BI одного из крупнейших банков Казахстана Kazkom.
ДМИТРИЙ КАЗАКОВ
Chief Analytics Officer in Kolesa Group
Дмитрий Казаков - Преподаватель курса Hard-аналитики данных
BI-evangelist Yandex DataLens, ex-Head of BI Yandex Go
  • BI-евангелист Яндекс Облако, в прошлом три года руководил группой развития BI Yandex Go
РОМАН БУНИН
BI-evangelist Yandex DataLens, ex-Head of BI Yandex Go
Роман Бунин - Преподаватель курса Hard-аналитики данных
Руководитель платформы данных toloka.ai
  • Более 10 лет опыта работы с данными.
  • Архитектор DWH и систем анализа данных в VK и Яндекс.Такси.
  • Кандидат технических наук, автор более 10 работ в области анализа данных.
  • Соавтор монографии по теории и практике анализа параллельных баз данных.
ЕВГЕНИЙ ЕРМАКОВ
Руководитель платформы данных toloka.ai
Евгений Ермаков - Преподаватель курса Hard-аналитики данных
Технический менеджер ML сервисов в VK Cloud
  • Специалист по Big Data и AI, занимается внедрением сложных кастомных проектов.
  • Участвовал в создании хранилищ данных в компаниях Платформа ОФД, X5 и VK.
АЛЕКСАНДР ВОЛЫНСКИЙ
Технический менеджер ML сервисов в VK Cloud
Александр Волынский - Преподаватель курса Hard-аналитики данных
Аналитик Raiffeisen CIB
Занимается продуктовой аналитикой и построением моделей машинного обучения в корпоративно-инвестиционном подразделении Райффайзенбанка.
НИКИТА ТАБАКАЕВ
Аналитик Raiffeisen CIB
Никита Табакаев - Преподаватель курса Hard-аналитики данных
Head of Data Science Raiffeisen CIB, хедлайнер курса
  • руководит data-трансформацией в Райффайзен CIB
  • хедлайнер курсов StartML, Hard аналитика и Deep Learning Engineer
  • специализируется на машинном обучении и продвинутой аналитике данных
  • студент аспирантской школы по экономике НИУ ВШЭ
Нерсес Багиян
Head of Data Science Raiffeisen CIB, хедлайнер курса
Chief Analytics Officer in Kolesa Group
  • Отвечает за развитие команд продуктовой аналитики, экспериментов, DWH, UX-research и Data Science.
  • Работает над построением data-driven, experiment-driven культуры и discovery процессов в продуктовой аналитике.
  • Работал в команде построения BI одного из крупнейших банков Казахстана Kazkom.
ДМИТРИЙ КАЗАКОВ
Chief Analytics Officer in Kolesa Group
BI-evangelist Yandex DataLens, ex-Head of BI Yandex Go
BI-евангелист Яндекс Облако, в прошлом три года руководил группой развития BI Yandex Go
РОМАН БУНИН
BI-evangelist Yandex DataLens, ex-Head of BI Yandex Go
Руководитель платформы данных toloka.ai
  • Более 10 лет опыта работы с данными.
  • Архитектор DWH и систем анализа данных в VK и Яндекс.Такси.
  • Кандидат технических наук, автор более 10 работ в области анализа данных.
  • Соавтор монографии по теории и практике анализа параллельных баз данных.
ЕВГЕНИЙ ЕРМАКОВ
Руководитель платформы данных toloka.ai
Технический менеджер ML сервисов в VK Cloud
  • Специалист по Big Data и AI, занимается внедрением сложных кастомных проектов.
  • Участвовал в создании хранилищ данных в компаниях Платформа ОФД, X5 и VK.
АЛЕКСАНДР ВОЛЫНСКИЙ
Технический менеджер ML сервисов в VK Cloud
Аналитик Raiffeisen CIB
Занимается продуктовой аналитикой и построением моделей машинного обучения в корпоративно-инвестиционном подразделении Райффайзенбанка.
НИКИТА ТАБАКАЕВ
Аналитик Raiffeisen CIB

как будете учиться /?/

как будете учиться

  • Уроки открываются 3 раза в неделю — по понедельникам, средам и пятницам
  • Все лекции доступны в записи и разбиты на компактные видео по 15−40 минут
  • На обучение понадобится в среднем от 8 до 16 часов в неделю
  • Сдавать домашние задания можно в течение двух недель
=> Самостоятельно планируйте нагрузку
  • Смотрите видеолекции и читайте конспекты к ним
  • Практикуйтесь на заданиях с кодом
  • Отправляйте решения на ревью и получайте обратную связь
  • Изучайте разборы идеальных решений в видео и текстовом формате
  • Погружайтесь в дополнительные материалы в каждом уроке
  • Выполняйте проекты в каждом модуле
  • Практикуйтесь на данных из разных сфер бизнеса
  • Закрепляйте навыки на задачах и проектах из индустрии
  • Работайте с инструментами в настоящем рабочем окружении
=> Решайте реальные задачи
=> Берите максимум от обучения

кто будет помогать в обучении //

Всегда готовы поддержать, приободрить и помочь в решении организационных вопросов
Кураторы
Виртуальный помощник на базе ChatGPT ответит на любые вопросы из области анализа данных и программирования
Чат-бот Ева
Кураторы - помощь в обучении на hard-аналитика
Проверяют код, справедливо оценивают проекты и дают развёрнутую обратную связь
Чат-бот Ева - помощь в обучении на hard-аналитика
Ревьюеры
Помогают справиться с задачами, делятся опытом и подталкивают к правильному решению
Эксперты
Эксперты - помощь в обучении на hard-аналитика
Ревьюеры - помощь в обучении на hard-аналитика

стоимость обучения >>

Беспроцентная рассрочка от наших партнёров

hard аналитика данных

> Продуктовый подход к созданию отчетности
> Работа с командой DWH и обработка больших данных
> Машинное обучение для решения задач аналитики
120 000 ₽
ПОЛНАЯ ОПЛАТА
ИЛИ В РАССРОЧКУ НА 6 МЕСЯЦЕВ:
Скидка 27 000 ₽ при единовременной оплате или в рассрочку на 6 месяцев от Т-Банка
> Продвинутые эксперименты
> Поддержка преподавателей
> Работа на удаленном сервере
рассрочка от партнёра:
* При рассрочке на 12 месяцев.
Срок рассрочки можно выбрать на этапе оплаты. Доступны опции от 6 до 12 мес.
12 500 ₽ / мес. *
Выгодно
150 000 ₽

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.
УДОБНЫЙ ЕЖЕМЕСЯЧНЫЙ ПЛАТЕЖ С БЕСПРОЦЕНТНОЙ РАССРОЧКОЙ ИЛИ ОПЛАТА ЧАСТЯМИ ОТ НАШИХ ПАРТНЁРОВ
Обучение может оплатить ваш работодатель >>

отзывы выпускников //

  • По моему мнению, курс HDA — крутой уникальный продукт на русскоязычном образовательном рынке, который решает самую злободневную задачу: сделать «крутые инструменты» — «бизнесовыми крутыми инструментами». Идея прослеживается во всех модулях курса.

    Читать полностью →
    Вера Ингинен
  • Примерно за полгода до поступления на курс задумался, что пора расти в профессии дальше, искал информацию самостоятельно, но не был уверен, что стоит изучать, а на что лучше не тратить время.

    Читать полностью →
    Данила Гончаров

FAQ >>

Остались вопросы?

Отправьте заявку, и мы проконсультируем вас.
Консультация по курсу продвинутой аналитики данных