Онлайн-курс глубокого обучения нейросетей для начинающих с нуля
> Узнайте, как обучают глубокие нейросети

Deep Learning Engineer

> Освойте базовые и продвинутые инструменты глубинного обучения
Профессия
Начало обучения Deep Learning Engineer
> После курса начните карьеру в перспективной сфере Deep Learning
Подойдет
для начинающих
Длительность курса по глубокому обучению искусственного интеллекта
длительность
4 МЕСЯЦа/5 месяцев
ФОРМАТ ОБУЧЕНИЯ
ОНЛАЙН
НАЧАЛО ОБУЧЕНИЯ
сразу после покупки
карьерная помощь
Авторы
эксперты индустрии
Помощь с трудоустройством Deep Learning Engineer после курса
Авторы курса Deep Learning Engineer

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.

Чем занимается Deep Learning Engineer >>

Deep Learning, или глубинное обучение, предполагает создание и обучение нейронных сетей, которые работают подобно человеческому мозгу.
Они обучаются на огромных объемах данных и умеют сами выбирать нужные признаки данных, а потому способны действительно на многое, когда речь идет о распознавании объектов и человеческого языка, а также о синтезе визуального и аудиоконтента.

–> И это — далеко не все задачи, которые решают глубокие нейронные сети

На курсе «Deep Learning Engineer» вы научитесь их создавать и обучать.

Распознавание речи

Глубинные модели способны преобразовывать речь в письменный текст — чтобы пользователю не нужно было, например, слушать голосовые сообщения.

Распознавание объектов

Глубинное обучение позволяет нейросетям легко распознавать лица, номерные знаки и другие объекты — в точности так же, как это показано в детективных фильмах.

Рекомендательные системы

Нейросети всегда готовы подсказать, какой фильм посмотреть или что лучше купить.

Анализ текстов

С помощью глубоких нейросетей можно переводить с одного языка на другой и получать ответы на любые вопросы — так, как это реализовано с Siri.
Распознавание объектов - Анализ текстов - глубокое обучение нейросетей
Распознавание речи - Анализ текстов - глубокое обучение нейросетей
Рекомендательные системы - Анализ текстов - глубокое обучение нейросетей
Анализ текстов - глубокое обучение нейросетей

Распознавание объектов

Глубинное обучение позволяет нейросетям легко распознавать лица, номерные знаки и другие объекты — в точности так же, как это показано в детективных фильмах.

Распознавание речи

Глубинные модели способны преобразовывать речь в письменный текст — чтобы пользователю не нужно было, например, слушать голосовые сообщения.

Анализ текстов

С помощью глубоких нейросетей можно переводить с одного языка на другой и получать ответы на любые вопросы — так, как это реализовано с Siri.

Рекомендательные системы

Нейросети всегда готовы подсказать, какой фильм посмотреть или что лучше купить.
На курсе «Deep Learning Engineer» вы научитесь их создавать и обучать
И это — далеко не все задачи, которые решают глубокие нейронные сети

Почему обучение Deep Learning сейчас актуально:

Хорошая зарплата
Начальная зарплата Deep Learning Engineer в России варьируется от 100 000 до 150 000 рублей в месяц. А в крупных IT-компаниях или исследовательских центрах зарплата Deep Learning Engineer может быть значительно выше и достигать 400 000 рублей в месяц и более
Интерес крупных компаний
Применение в различных отраслях
Искусственный интеллект и нейросети уже используются в медицине, финансовой сфере, ритейле, автомобильной промышленности и многих других областях.
Специалистов в области глубинного обучения нанимают Сбер, Яндекс,
Т-Банк, Райффайзен Банк, Сколково, Avito, VK, Kaspersky, JetBrains, Speech Technology Center, GigaChat, Ростелеком и многие другие
Применение искусственного интеллекта в различных отраслях
Интерес крупных компаний в инженерах по глубокому обучению
Зарплата специалистов по обучению нейросетей
пока в этой сфере еще не так много специалистов и ниже конкуренция

Вы можете сделать шаг к новой карьере сейчас,

Кому подойдет курс //

Уже кое-что знаете о Python и ML и готовы начать карьеру в сфере обучения нейросетей
Имеете базу знаний в области математики и IT, работаете на должности ML-инженера или аналитика данных, но хотите чего-то большего — и в плане задач, и в плане зарплаты
ML-инженер
Новичок
Хотите остаться в профессии аналитика данных или Data-инженера, но заинтересованы в более высокооплачиваемых и интересных задачах
Другие Data Science специалисты
Курсы по обучению нейросетей для начинающих
Оставьте заявку — мы поможем подобрать программу под ваши цели и уровень

НЕ УВЕРЕНЫ, ЧТО КУРС ВАМ ПОДХОДИТ?

Глубокое машинное обучение для ML-инженеров
Обучение нейросетей для других специалистов

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.

Как устроен курс?

Программа обучающего курса составлена таким образом, что вы можете освоить Deep learning практически с нуля
Первые 8 недель
Следующие 8 недель
> Базовая теория, которая подготовит вас к более глубокому изучению DL.

> За это время вы погрузитесь в сферу глубинного обучения и поймете основные закономерности.
> Продолжение обучения в одном из трех направлений после выбора соответствующего трека:
Использование глубинных моделей для перевода, анализа текста и решения других задач обработки естественного языка
Использование глубинных моделей для анализа визуального контента, изображения и видео
Использование глубинных моделей для создания голосовых помощников и решения других задач, связанных с распознаванием живой речи

чему научитесь?

База DL: основы глубинного обучения нейросетей

Основы глубокого обучение нейросетей
Выделение закономерностей
Построение нейросетей
Оптимизация нейросетей
Основы NLP/CV/Audio Analysis
Начнете погружаться в тему DL, поймете, как обучаются нейросети, научитесь создавать тензоры
Научитесь собирать нейросеть из слоев и проводить с ней различные операции
Изучите основные методы оптимизации, научитесь измерять качество в нужных точках
Базово освоите принципы обработки текста, живой речи, фото- и видеоконтента с помощью нейросетей, чтобы подготовиться к дальнейшему более глубокому изучению
1
2
3
4

Natural Language Processing (NLP)

Основы глубокого обучение нейросетей
Обработка текста
Решение задач NLP
Архитектура модели «Трансформер»
Дообучение нейросетей
Научитесь извлекать из текста полезные признаки с помощью глубоких нейросетей
Освоите классификацию, регрессию, разметку именованных сущностей, генерацию текста, seq2seq
Поймете, как все устроено, и в чем разница между наиболее популярными трансформерными моделями
Узнаете, как дообучать произвольные нейронные сети на небольших наборах данных, и как уменьшать их размер без потери качества
1
2
3
4

Computer Vision (CV)

Основы глубокого обучение нейросетей
Классические методы CV
Нейросетевые подходы в CV
Практические навыки обучения нейронных сетей
Кругозор и real-world задачи
Познакомитесь с классическими подходами в обработке изображений, разберетесь с представлением изображения в компьютере
Узнаете, как устроены современные архитектуры нейронных сетей (CNN, ViT) и за счет чего они становятся точнее и эффективнее
Изучите трюки для максимальной точности работы сети, освоите инструменты логирования (W&B) и начнете проводить эксперименты системно.
Узнаете, как решать базовые задачи, а также выстраивать решения для сложных многосоставных задач типа (трекинг множества объектов на видео, распознавание лиц, генерация изображений). Поймете, чем вам хотелось бы заниматься дальше.
1
2
3
4
Использование фундаментальных моделей и VLM
Приобретете навыки работы с фундаментальными моделями типа CLIP, SAM, Grounding DINO и сможете использовать их для разметки и решения собственных задач
5

Audio Analysis

Основы глубокого обучение нейросетей
В разработке
Отправить заявку на курс Аналитик данных

Готовы начать обучение?

Оставьте заявку — мы расскажем, что нужно, и поможем подобрать подходящий курс

записаться на курс или задать вопрос

Мы свяжемся с вами и ответим на все ваши вопросы по курсу.

программа курса //

База DL

автор:
Алексей Кожарин
Продолжительность:
8 недель
Практические задания:
После каждого блока